This is an author-generated version.
The final publication is available at http://dl.acm.org
Bibliographic information:

Fabian Fagerholm, Alejandro S. Guinea, Jurgen Minch, Jay Borenstein. The
Role of Mentoring and Project Characteristics for Onboarding in Open Source
Software Projects. In Proceedings of the 8th ACM-IEEE International
Symposium on Software Engineering and Measurement (ESEM 2014),
Torino, Italy, September 2014.

The Role of Mentoring and Project Characteristics for
Onboarding in Open Source Software Projects

Fabian Fagerholm?', Alejandro S. Guinea', Jiurgen Minch', Jay Borenstein23
{fabian.fagerholm, azsanche, juergen.muench}@cs.helsinki.fi, borenstein@cs.stanford.edu

"Department of Computer

2Department of Computer

3Facebook

Science Science 1601 Willow Road
University of Helsinki Stanford University, Stanford Menlo Park, CA 94025
P.O. Box 68, FI-00014 353 Serra Mall, CA 94305 USA

University of Helsinki
Finland

ABSTRACT

Context: Onboarding is a process that helps newcomers become
integrated members of their organisation. Successful onboarding
programs can result in increased performance in conventional or-
ganisations, but there is little guidance on how to onboard new
developers in Open Source Software (OSS) projects. Goal: In this
study, we examine how mentoring and project characteristics in-
fluence the effectiveness and efficiency of the onboarding process.
We study a collaboration program involving a total of nine Open
Source Software projects and more than 120 students from different
universities around the world as part of Facebook’s Education Mod-
ernization Program. Method: We use quantitative measurements of
source code repositories, issue tracking systems, and discussion fora
to examine how newcomers become contributing members of their
OSS projects. Results: We found that developers receiving deliber-
ate onboarding support through mentoring were more active at an
earlier stage than developers entering projects through conventional
means. Also, we found that project size and lifetime influenced on-
boarding. Conclusion: Empirical decision support can contribute
to a more effective onboarding process in OSS projects. Mentor sup-
port in critical stages can accelerate the process, but project maturity
is also a significant factor that increases the effect of onboarding.

Categories and Subject Descriptors

K.6.1 [Project and People Management]: [Staffing;
Training; Systems development]

General Terms

Experimentation, Human factors, Management

Keywords

Onboarding, Organisational Socialisation, Open Source Software,
Case Study, Mentoring, Software Teams, Distributed Development

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ESEM’14 September 18-19, 2014, Torino, Italy

Copyright 2014 ACM 978-1-4503-2774-9/14/09...$15.00

1. INTRODUCTION

Onboarding, also known as organisational socialisation, refers
to processes that help new employees learn the knowledge, skills,
and behaviours they need to succeed in their new organisations [5].
Newcomer adjustment has been associated with important outcomes
such as satisfaction, commitment, turnover, and performance [4].
In environments with high employee turnover and high cost of
replacing an employee, well-functioning onboarding procedures can
give organisations a competitive advantage: by correctly applying
onboarding programs, software development groups can be grown
and their productivity increased without needlessly holding back
existing members or disrupting normal activities [19].

While onboarding is well understood in the context of conven-
tional organisations [5], it is not obvious how to transfer this un-
derstanding to new forms of organisation. Software companies
increasingly turn to Open Source Software (OSS) projects as a
source of low-cost innovation and productivity [10, 28, 42]. OSS
projects are often at the core of ecosystems which companies must
become involved in to acquire a market share. The scale of projects
may exceed the capabilities of a single company, and customers may
only be reachable through a certain OSS ecosystem. This creates a
need for onboarding both the company’s own employees into exist-
ing OSS projects, as well as external individuals into the company’s
own OSS projects.

Despite these potential benefits, guidance on how to manage OSS
projects is still largely missing in many areas [15]. To gain the
benefits of OSS, organisations must understand the particular traits
of OSS development that set it apart from other kinds of approaches.
In particular, the nature of the development process followed in
many OSS projects poses a number of challenges that can determine
to what extent benefits are gained. One important aspect of man-
aging OSS projects concerns developer involvement, engagement,
and productivity. Systematic onboarding is not a common practice
in OSS development. The inclusion of newcomers is often seen
as depending mainly on self-motivation and personal interest [37]
rather than as a systematic process for quick integration. This is an
important consideration for organisations wishing to support new
OSS developers.

In this paper, we present an empirical multiple-case study in
which we investigate onboarding in OSS projects. Our goal is to
analyse factors that have an influence on the efficiency and effec-
tiveness of onboarding in OSS projects. We examine and compare
OSS projects and OSS developers in the context of a collabora-
tion program conceived and organised by Facebook and Stanford
University. In this program, students from different universities

around the world were selected and assigned to one of nine different
OSS projects. The program provided several elements of deliberate
onboarding: throughout the collaboration program, a mentor from
each project helped with integrating the students, and there was a
common, co-located kick-off Hackathon event at the beginning of
the collaboration. We specifically investigate how developers receiv-
ing onboarding support as part of the program perform compared to
other developers, and how the performance of supported developers
in the different projects compare to each other. We obtain empirical
data for assessing the efficiency and effectiveness of onboarding in
OSS projects.

Our analysis revealed that as a whole, developers receiving on-
boarding support were more efficient and effective than developers
who entered the same projects through the natural, non-deliberate
process which is common in many OSS projects. We also found
that there were differences in onboarding results which could be
attributed to OSS project characteristics, such as project age and
distribution of contributions among project members.

The contributions of this work include (1) the empirical obser-
vation that deliberate onboarding practices have an impact on the
integration of new developers in OSS, and (2) insights into how
mentoring and project characteristics can influence the speed of
integration. In addition, we offer some suggestions regarding on-
boarding for OSS communities and companies interested in getting
involved in OSS projects.

The remainder of this paper is structured as follows. In the next
section, we present related work on onboarding and the research
questions. Section 3 provides a detailed description of the collabora-
tion program that forms the context of our study. The study design,
along with the definition of metrics to assess onboarding efficiency
and effectiveness, is presented in Section 4. In Section 5, we present
and analyse the results. The implications of the results are discussed
in Section 6. Limitations and threats to validity are discussed in
Section 7. Finally, we summarise the findings and outline future
work in Section 8.

2. RELATED WORK AND RESEARCH
QUESTIONS

Research into onboarding processes in the context of OSS projects
is currently scarce. Most related studies deal only with the natural,
non-deliberate process that developers typically follow when joining
an OSS community (e.g. [8, 32, 23, 37]). They examine a process
where joining and participating in OSS projects is a personal ini-
tiative driven by individual motivation and interests. This natural
process of involvement in OSS stands in contrast to a deliberate
onboarding process that is driven by organisational goals and that
utilises guidance and support mechanisms provided by the organ-
isation. To our knowledge, only a previous paper by the present
authors — with preliminary results from this study — treats the process
of onboarding in OSS directly [21]. In that preliminary analysis,
we focus only on the influence of mentoring and consider only the
first 12 weeks of the development activities. However, several other
works present theory and raise relevant considerations for studying
onboarding.

Ducheneaut [18] approaches onboarding from a sociological point
of view, considering the perspective of individual developers. This
study found that joining an OSS project requires newcomers to
go through a complex socialisation process. Only those who have
managed to define and present themselves as skilled and well versed
in development will reach the official status of developer in a project.
Hence, contributing to an OSS project is as much a process of
socialisation as a demonstration of technical expertise. Von Krogh

et al. [44] gather different aspects related to the process of joining
an OSS project, providing observations and suggestions that can
serve to build controlled joining mechanisms. They found that
the participation of developers in OSS projects is not costless, and
detailed some of the community-related benefits to newcomers.
They pointed out the importance of devising a theory including
these and other elements that have not been apparent in the study of
OSS development.

More general perspectives on onboarding in software companies
have been presented in the literature. Typical project characteris-
tics and context factors, and their impact on onboarding, have been
studied [17], revealing that human guidance is more important than
any other factor for helping newcomers to settle in and providing an
understanding of source code and project issues. Onboarding new-
comers into virtual teams has been analysed [29], as well as novice
software developers and new college graduate students heading for
their first job [6, 7]. These studies have found that poor commu-
nication and lack of experience in socialisation skills are at the
root of most problems newcomers encounter in their development
endeavours.

Mentoring has been identified as a key activity to support onboard-
ing. Swap et al. describe mentoring as a fundamental knowledge
transfer mechanism in companies [40]. Sim and Holt present a study
of mentoring patterns that occur in the process of integrating new
developers into software projects [19], finding that mentoring is an
effective way to onboard newcomers and to overcome issues derived
from lack of good system documentation. However, it can also
result in inefficiency due to decreased productivity of developers
performing the mentoring function. In the context of OSS, some
studies have pointed out the importance of mentoring for sharing
and reuse of knowledge [39, 15, 38, 43]. More recently, Shilling et
al. directly studied the impact of mentoring on training and retention
of developers in OSS projects [36]. Based on their findings, they
propose mentoring as a training method for OSS projects, and devise
a measuring scheme for evaluating the appropriateness of mentoring
for facilitating learning and retention among developers.

Inspired by the theory and findings presented above, our first
research question relates to the aspect of human guidance in the
form of mentoring:

RQ1 What is the influence of mentoring on the efficiency and
effectiveness of onboarding in OSS projects?

Besides actively supporting the onboarding process with measures
such as mentoring, companies can often choose between different
OSS projects they could turn to. A criterion for choosing an ap-
propriate OSS project could be the ease of getting integrated in the
project and getting a sufficient number of developers effectively and
efficiently onboard. Therefore, we also consider selected characteris-
tics of OSS projects that might have an impact on onboarding of new
developers. Significant attention has been given in previous studies
to the type of license projects are using [15]. However, based on the
observations of a large number of OSS projects made by Capiluppi
et al. [12], it appears more appropriate for our purposes to analyse
other project characteristics, such as size, age, and the distribution
of developer contributions. Our second research question relates to
the relationship between project characteristics and onboarding:

RQ2 What is the influence of specific OSS project characteristics
on the efficiency and effectiveness of onboarding in those
projects?

Different metrics have been proposed to measure the performance
of OSS developers both over time and with respect to their overall

project contribution. Several previous studies have devised metrics
based on commits — individual items of contribution in source code
repository data [2, 27]. Zhou and Mockus have devised a metric
for assessing whether developers have achieved a high level of
proficiency (“true mastery”) [46]. Fritz et al. have proposed a metric
for measuring the degree of knowledge, based on a combination
of authorship and interest in particular parts of software projects,
where the interest is measured by the amount of selections and edits
over a source code element [25].

An additional consideration in OSS research is sampling. Some
previous OSS-related studies have focused on a small number of
projects selected based on their large user base, widespread use of
their software, or due to interest in some specific aspects of the
project (e.g., [33, 11, 43, 2]). Focusing on one or two projects can
yield deep insights into their particular characteristics, but might
limit the generality of the findings. Other studies have included a
larger number of projects with heterogeneous characteristics, pro-
viding a higher level of generality and validity. One good example
of the latter is Capiluppi et al. [12], which studies over 400 OSS
projects.

The availability and collection of OSS project data poses specific
challenges to researchers. Several previous studies have examined
the kinds of data available through publicly available source code
repositories, methods for extracting and cleaning it, and approaches
to analysing it (e.g., [16, 33]). While using this data is tempting due
to ease of access, there are several caveats involved. Research into
mining software repositories warns against blindly using data from
large amounts of projects hosted on source code hosting sites and
from distributed version control systems (e.g. [30, 9]). The data is
often incomplete both for technical reasons and because important
project events may occur outside the publicly available data set, e.g.,
in personal conversations both online and in person.

3. CONTEXT

During the first half of 2013, Facebook, Inc. implemented an OSS
collaboration as part of their Education Modernization Program. The
program was initially piloted by Jay Borenstein, Education Mod-
ernizer at Facebook and lecturer in Computer Science at Stanford
University. Based on the success of the initial pilot, the program was
expanded to introduce the element of cross-university collaboration.
This program forms the context for our study. The program brought
several OSS projects, companies, and universities around the world
together to provide students with the opportunity to experience OSS
development and learn relevant related skills.

More than a dozen universities from different countries were
invited to participate in the collaboration program. Each of them
integrated the program into its curriculum according to the local
academic calendar and technical infrastructure. For example, at the
University of Helsinki, the program was integrated as an advanced
master’s-level course conducted in the Software Factory laboratory
for empirical software research and education [1, 22]. Students
could choose to participate for a duration of three to six months, and
with a varying degree of working hours per week.

A total of nine OSS projects were selected into the program by
Mr. Borenstein. The main criterion for inclusion was the availability
of a mentor who was familiar with the project and who could devote
time to supporting the students. The participating OSS projects were
Freeseer, Kotlin KJ2K, MongoDB, Mozilla Open Badges, Phabrica-
tor, PouchDB, Review Board, Ruby on Rails, and Socket.IO. From
these, our study focuses on Kotlin KJ2K, Phabricator, Ruby on Rails,
and Socket.IO. We decided to focus on these projects because the
student teams included members from the Department of Computer

Science, University of Helsinki, and we were thus able to observe
them more closely.

Approximately 120 students participated in the collaboration pro-
gram. After an admission process that varied between universities,
these students indicated their preferred OSS projects, and were then
assigned to project-specific teams with members from at least two
universities. Each OSS project was assigned two teams, and each
team had four to eight students. An experienced developer from
each project functioned as a mentor for the student teams.

Mentors were expected to be responsive to students and had
demonstrated proficiency as software engineers, with a large num-
ber of contributions to the OSS projects they were associated with.
No previous experience as mentors was required from them, and no
written agreement or contract was made between them and any other
party. The program followed the typical configuration of OSS devel-
opment, where people participate, maintain personal engagement,
and share their knowledge more for intrinsic or altruistic reasons
than for other kinds of incentives [39, 34, 23].

At the beginning of the collaboration program, a three-day kickoft
Hackathon was organised at Facebook’s offices in California, USA.
During this event, teams were formed and each student got to know
their team mates and their OSS mentors. The mentors provided
the students with practical training required to start contributing to
their OSS projects. This included familiarisation with the code base,
tools, and procedures used in the project.

After the kickoff, students returned to their home universities
to continue working for their assigned projects, now as teams dis-
tributed over different geographical locations and time zones. Some
practices were suggested in order to support successful onboard-
ing of the students. Among these were daily meetings and com-
munication via email, chat, and video conference, as well as the
establishment of high-level goals after a period of familiarisation.

The mentors performed different activities for supporting stu-
dents, such as participating in online fora and mailing lists with
the students, conducting, or sometimes only participating in online
meetings through video conferencing and chat, helping students find
and understand tasks, reviewing code contributions and providing
feedback on them, and helping to coordinate the work of students
through issue tracking systems.

Students were in general free to work on any tasks they found
relevant. Initially, mentors led students to work on small tasks
suitable for novices, to make them become proficient little by little,
until they had the skills and knowledge necessary to tackle more
complex, self-selected tasks. The tasks were programming tasks of
different types and complexities, from bug fixes to more advanced
activities involving design and implementation of new features.

Opverall, students were onboarded into the OSS projects and com-
munities in ways that were common for each project. Hence, they
were exposed to the regular norms and implicit policies of the cor-
responding community. All these factors provided the students
with a realistic scenario where they were able to work as regular
developers.

4. STUDY DEFINITION AND DESIGN

Our goal is to analyse factors that have an influence on the ef-
ficiency and effectiveness of onboarding in OSS projects. Specifi-
cally, we examine mentoring (RQ1) and selected characteristics of
OSS projects that might be relevant for the process of onboarding
(RQ2). We aim to establish a relationship between these attributes
by conducting quantitative data collection and analysis. Since we
are conducting an observational study that examines several OSS
projects in their natural context, this work can be characterised as
an empirical multiple-case study, as defined by Wohlin et al. [45].

We use the Goal-Question-Metric (GQM) approach [3] to opera-
tionalise the research questions into two corresponding measurement
goals:

G1 Characterise and understand the effect of mentoring on the
efficiency and effectiveness of the onboarding process from
the point of view of project managers in the context of the
OSS collaboration program.

G2 Characterise and understand the effect of project characteristics
on the efficiency and effectiveness of the onboarding process
from the point of view of project managers in the context of
the OSS collaboration program.

By project managers, we mean individuals who are responsible
for managing the introduction of new members into OSS projects.
In the remainder of this section, we discuss the conceptualisation of
mentoring, project characteristics, and efficiency and effectiveness
of onboarding, as well as the derivation of questions and metrics
associated with the measurement goals shown above.

The projects under study manage their development and com-
munications activities through the GitHub system, which provides
publicly accessible tools for collaborative software development: a
version control system for program source code, an issue tracking
system, and discussion tools for coordination. The data set of this
study is available for download from the Figshare repository [20]. It
can be used, for instance, for replications and further analyses.

4.1 Conceptualisation of Factors in
Onboarding

Mentoring. The role of the OSS mentors was to support the devel-
opers in most of their activities — e.g., recommending and helping
to interpret tasks, explaining the architecture of the software, and
assisting in technical development details. Because of the influence
the mentors had on developers, we assume that positive results in
developer performance is related at least to some extent to the sup-
port given by the mentors both during the kickoff Hackathon and
over the duration of the whole collaboration program. The effect of
successful mentoring is likely to be visible as an increase of specific
developer actions. For instance, a mentor suggesting suitable tasks
to perform could increase the number of commits over time by help-
ing developers to focus on specific activities and become proficient
at an increased pace. Also, mentors can encourage developers to
cope with certain development and communication activities, thus
influencing the degree of collaborative activities between develop-
ers. Higher activity among developers reflects to some extent the
influence that mentors have on developer performance. This leads
to our first measurement question:

Q1 To what extent does mentoring influence the progression of
active participation of developers in OSS projects? (G1)

The distribution of contributions in OSS projects usually follows
a power-law distribution, with a few developers contributing most,
and the majority contributing only a little (e.g. [13, 33]). Newcomers
typically start at the periphery of the project community, and may
have little contact with core developers [14]. We hypothesise that
expert support from core project members can help newcomers by
influencing their motivation, increase cohesion among community
members, and reduce the gap between required skills and knowl-
edge and developer ability. As mentioned in Section 3, the mentors
were well versed in their corresponding projects and willing to help
developers on a regular basis. They acted as experts who might push
developers into higher levels of motivation, engagement, proficiency,

and consequently higher levels of contribution. If developers receiv-
ing mentoring become more active contributors than the peripheral
developers [31] of the corresponding project, this can be seen as
stemming from the positive influence of mentoring.

We analyse the influence of mentoring on levels of contribution
by comparing the performance of developers that have been delib-
erately onboarded as part of the collaboration program against the
performance of developers that have joined the same OSS projects
by the natural process of involvement. This comparison is formu-
lated as the following measurement question:

Q2 To what extent does mentoring influence the overall contribution
of developers in OSS projects? (G1)

Project characteristics. Even if deliberate onboarding support
is given, its influence on the efficiency and effectiveness of the
onboarding process may vary between projects. OSS project charac-
teristics may moderate the effect of interventions such as mentoring.
The OSS project characteristics that are analysed in this study were
chosen based on their relation to and potential impact on onboard-
ing. Project characteristics may influence the dynamic aspects of
the onboarding process, leading to our third measurement question:

03 To what extent do specific project characteristics influence
the progression of active participation of developers in OSS
projects? (G2)

On the other hand, project characteristics may have an effect on the
total outcome of the onboarding process at some specific point in
time:

04 To what extent do specific project characteristics influence the
overall contribution of developers in OSS projects? (G2)

We consider characteristics that account for project size in terms
of contributions, number of developers, and relative importance of
their corresponding peripheral developers. In addition, we consider
the age of the project and the level of interest that the project has
attracted from developers both within and outside the project. Char-
acteristics related to size can help establish a baseline, or normal
level of developer proficiency. The maturity of the processes and
procedures of the project — regardless of whether they are docu-
mented or not — might be related to its lifetime. This, in turn, may
have an impact on how quickly and easily new members can become
integrated. The appeal of a project might be relevant to measure the
potential growth of the contributor population. Also, and probably
more importantly for onboarding, an appealing project may be more
likely to maintain developer motivation.

Next, we describe each selected characteristic, justify the choice,
and explain its purpose and use in our study.

Commits. This refers to the total number of commits that have
occurred within a project during a specified time interval and for
a specific set of developers. This characteristic can reflect both
the size of the project and the degree of active participation in the
form of code-writing by contributors. For the onboarding process,
this characteristic can be relevant in evaluating the performance of
newcomers compared to the peripheral developers.

Contributors. This characteristic is concerned with the total number
of contributors in a project. It is another size-related characteristic
that reflects organisational or group size rather than, as in the case
of commits, the size of a stream of activity.

Appeal. We conceptualise the appeal of a project as the observable
interest that current and potential developers have shown towards it.
Specifically, appeal is obtained by counting the number of persons

10 1 X
X
X
X
X
2
£
£
S X
%
X
X X *
1 = L
Kotlin KJ2K Phabricator Rails Socket.l0

Projects

Figure 1: Distribution of commits.

who have used the GitHub function to “follow” a project, plus
the number of times the project has been “forked”, or copied to
initiate a new development branch. This characteristic can help
assess how much attention the project is receiving from the OSS
community, beyond directly observable contributions and online
discussions. It can be relevant in understanding the performance of
the developers within a project, given that a great part of it depends
on self-motivation and interest.

Lifetime. This characteristic refers to the time that the project has
been active. This characteristic is aimed to reflect the maturity of a
project, although for a full assessment of maturity, other aspects such
as the history of the project in terms of contributors and contributions
and detailed evaluation of project practices have to be considered as
well. A mature project is expected to benefit a smoother inclusion
of developers.

Peripheral contribution. This characteristic refers to the proportion
of contributions made by the peripheral developers, in contrast
to contributions made by all developers. We consider peripheral
developers as those developers who have made some contribution
to the project but who are not “core” developers. Being able to
distinguish between peripheral and “core” developers allows us
to assess the relative level of contributions from the developers
receiving onboarding support. Thus, we can determine the level of
contributions that developers with onboarding support should reach
in order to consider the onboarding successful.

Efficiency and effectiveness of onboarding. We consider the effi-
ciency of an onboarding process to correspond to the time taken to
reach a specific level of integration. A more efficient process short-
ens the time it takes to learn the skills and obtain the knowledge
required to contribute to organisational goals. By effectiveness of
onboarding, we mean the depth of integration. A more effective
process results in deeper integration and a greater likelihood of con-
tributions overall as well as a greater likelihood of more valuable
contributions.

To evaluate the influence of mentoring on onboarding efficiency
and effectiveness, we compare the speed of contribution and over-
all contribution of developers who received deliberate onboarding
support to a random sample of peripheral developers who did not
participate in the collaborative program and thus can be assumed
to have joined through the non-deliberate joining process that is
natural for each OSS project. To evaluate the influence of project
characteristics, we compare the speed of contribution and overall

contribution of each group of developers who received deliberate
onboarding support in each project to each other. For systematic
comparison, we first identify the “core” developers of each project
by analysing outliers in the distribution of contributions. Following
a common convention for boxplots [24], we consider outliers to be
points exceeding O3 + 1.5 X IQR. We do not consider them in the
analysis, since successful onboarding does not require developers
to be at the highest level of expertise, or, in our case, to become
a “core” developer. Rather, they should be able to contribute to
the project on a regular basis at the level of proficiency they have
acquired. Once the core developers are removed from consideration,
we obtain the distribution of commits of the remaining developers
(i.e., the peripheral developers). This choice is supported by pre-
vious studies (e.g., [14, 13, 33]). By comparing developers with
deliberate onboarding support to the peripheral developers, we ad-
just the expected level of contribution to be within normal ranges
for regular active participation.

5. ANALYSIS AND RESULTS

In this section, we present the results that aim to answer the GQM
questions formulated in Section 4, and consequently help to answer
the research questions of our study. Before describing the results,
we explain how we obtained the population corresponding to the
peripheral developers of each project according to the criteria given
in Section 4.1.

The criteria stated that the peripheral developers group is formed
by the first three quartiles of the distribution of overall commits of
developers, with the core developers removed from consideration.
We analyse the distribution of contribution of the OSS projects
considered in our study using a box-and-whisker plot, shown in
Figure 1. The distribution of commits for each project, scaled
to the range [1, 10] and depicted using logarithmic scale, can be
seen together with all the outliers. The box-and-whisker plot helps
us to find core developers and recognise the shape of the commit
distribution of each project.

Analysing Figure 1 in more detail, we can find useful information
for comparing the relationship between project characteristics and
the efficiency and effectiveness of onboarding. For each project’s
distribution we obtained the Gini coefficient in order to assess how
evenly distributed they are. The Gini coefficient expresses the in-
equality of a distribution as a value between 0 (complete equality) to
1 (complete inequality) [26]. Kotlin KJ2K, with a Gini coefficient of
0.69, and Ruby on Rails, with 0.70, are more evenly distributed. In
contrast, Socket.IO, with a Gini coeflicient of 0.90, and Phabricator,
with 0.91, display a very high inequality among the contributions of
their developers. The behaviour of the Gini coefficient can be seen
in the figure.

All comparisons that follow from here are made either with
respect to the peripheral developers group, characterised by the
analysis of the commit distribution, or based on the shape of the
distribution shown by each project.

5.1 Influence of Mentoring on Onboarding
RQ1 What is the influence of mentoring on the efficiency and effec-
tiveness of onboarding in OSS projects?

We now discuss the results that answer the GQM questions corre-
sponding to the first research question:

Q1 To what extent does mentoring influence the progression of active
participation of developers in OSS project?

To answer this question, we compare the results of two selected
groups during a predefined period of time. The time window for

10.00

)
8.00] N\

Trendline(supported)

o
=)
S}

commits/week

&
1)
5}

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

weeks

= =supported ****non-supported

Figure 2: Speed of contribution.

the comparison between developers with onboarding support and
peripheral developers without support corresponded to the duration
of the collaborative program, i.e., 16 weeks. In order to obtain
the results corresponding to developers with onboarding support,
we register them from the beginning of the collaboration program
until its end. For the non-supported developers, we identified the
time stamp of their first commit, and then counted metric values
beginning one week before this date and for 16 weeks thereafter. The
reason for this choice is that based on observation of the developers
with onboarding support, the first commit may not be registered
immediately when the developer begins to participate in a project.
At the same time, using the time stamp when the developer has
signed up to participate in the project may not adequately reflect
when the developer has actually begun active participation, with a
large gap between sign-up and first activity.

The results of the speed of contribution over time exhibited by
developers with onboarding support compared to non-supported
developers are shown in Figure 2. An analysis of the progression of
the two groups shows a noticeable positive trend in both. The speed
of contribution among supported developers is visibly higher from
the beginning. We used a two-tailed paired samples t-test to check
for the statistical significance of the difference between the speed of
contribution of each group (i.e., Hy: same speed), obtaining a ¢ value
of 7.38 — higher than the critical value of 2.12 — with a significance
level of 5%. Thus, we can say that the difference between the
speed of contribution of supported developers and non-supported
developers is statistically significant.

The varying shape of the plots in in Figure 2 likely reflects the
nature of human learning. When encountering a previously unknown
task, we expect that developers engage in learning activities such
as gathering and interpreting information to clarify the task and
understand the software they are about to modify. Once they have
accumulated enough knowledge and have reached a satisfactory
level of understanding, they can begin to perform actual visible
work. At some point, the performance of developers reaches a point
of stabilisation where the speed converges around a constant value
[46]. This stabilisation stage can be seen in the last weeks of the
time window under analysis.

Based on the comparison between the speed of contribution of
the two groups, it is clear that the supported developers surpass the
performance of the non-supported developers. It seems reasonable to
say that it has a positive influence on the performance of developers,
since it is a main factor that separates developers receiving deliberate

onboarding support from those not receiving it. Furthermore, since
the speed of contributions for developers receiving mentoring is
significantly higher, we can safely say that in the context of OSS
development, mentoring is one element that influences the efficiency
of onboarding.

Q2 To what extent does mentoring influence the overall contribution
of developers in OSS projects?

The numbers concerning the overall contribution of supported
developers and non-supported developers per project displays a clear
advantage for the supported developers [20]. The supported devel-
opers contributed a total number of 11 commits in Kotlin KJ2K,
26 commits in Phabricator, 40 commits in Ruby on Rails, and 21
commits in Socket.IO. In contrast, the group of non-supported devel-
opers contributed a total of 5 commits in Kotlin KJ2K, 11 commits
in Phabricator, 17 commits in Ruby on Rails, and 9 commits in
Socket.IO. In all cases, the contribution of supported developers is
about three times larger than the contribution from non-supported
developers. We can thus consider the onboarding process as being
successful. As with the previous GQM question, we can say that
mentoring has been an important element in obtaining such good
results. Our results show that mentoring has had a positive influence
on the onboarding process in the case context. Therefore, mentoring
may positively impact the effectiveness of an onboarding process in
the context of OSS projects at large.

5.2 Influence of Project Characteristics on On-
boarding

RQ2 What is the influence of relevant characteristics of projects on
the efficiency and effectiveness of onboarding in OSS projects?

To answer this question, we first select a number of relevant
characteristics according to the criteria in Section 4. To facilitate
comparison, appeal was normalised to be in the range [0, 1]. Projects
with lower appeal are given values closer to 0 and projects with
higher appeal are given values closer to 1.

Table 1 shows the results obtained for project characteristics.
Ruby on Rails has the highest numbers on all characteristics ex-
cept peripheral contribution, where it comes second. The numbers
indicate that Ruby on Rails could be a project that benefits the
onboarding of developers. Given its lifetime, the maturity of the
project seems to impact the number of commits, number of contrib-
utors, appeal, and, to a lesser extent, the proportion of the average
contribution of the peripheral developers. The highest peripheral
contribution, that of Kotlin KJ2K, can be explained in part by its
low number of contributors, which makes the contribution of each
developer more important. This can also be corroborated by the
number of commits per developer of Kotlin KJ2K, shown in Figure 1
and supported by its Gini coefficient which, as previously shown, is
more evenly distributed than Phabricator and Socket.IO.

The projects Phabricator and Socket.IO have similar characteris-
tics. However, Phabricator is somewhat higher in terms of commits,
contributors, and appeal, but still has almost the same level of pe-
ripheral contribution. This can be explained by a large outlier in the
Phabricator project, described at the beginning of this section, which
makes the contributions of the peripheral developers in Phabricator
be proportionally smaller than the one of Socket.1O.

Based on the characteristics obtained for each project, we answer
RQ2 by providing results and analysis corresponding to our GQM
questions Q3 and Q4, as defined in Section 4.

Q3 To what extent do specific project characteristics influence the
progression of active participation of developers in OSS projects?

Table 1: OSS Project Characteristics

Project Commits Contributors Appeal Lifetime Peripheral Contribution
Kotlin KJ2K 123 10 0.00 1.0 0.10
Phabricator 4876 164 0.11 24 0.05
Ruby on Rails 20000 2201 1.00 8.5 0.08
Socket.IO 1469 55 0.05 2.1 0.06

4.00

N

3.00 N .
. ‘ S Trendline(Ruby on Rails)
N B .

commits/week

== Kotlin = =Phabricator * ¢ *Ruby on Rails Socket.I0

Figure 3: Speed of contribution per project.

Based on the 16-week time window established for answering
Q1I, Figure 3 shows the progression of the speed of contribution
over time of the developers with onboarding support for each of the
projects.

Ruby on Rails exhibits an overall higher speed than the other
projects. The opposite case is Kotlin KJ2K with the lowest speed.
Between these, Socket.IO falls slightly below Phabricator, which
exhibits an initial speed comparable to the one shown by Ruby on
Rails.

It is important to notice that the speed values shown in Figure 3
do not depend on differences in population size, since the number
of developers that received onboarding support was roughly the
same for all projects. Therefore, the results show that for developers
receiving onboarding support, those participating in Ruby on Rails
had higher speed values than those participating in any of the other
projects. We can thus say that project characteristics have an influ-
ence on the speed of development and how fast a certain level of
performance is reached.

Q4 To what extent do specific project characteristics influence the
overall contribution of developers in OSS projects?

Looking at the overall number of commits from supported de-
velopers on each project (i.e., Kotlin KJ2K (11), Phabricator (26),
Ruby on Rails (40), and Socket.IO (21)), and considering the charac-
teristics of each project, some patterns become apparent. The appeal
of a project, its size in terms of number of commits and number
of contributors, as well as its maturity based on lifetime, appears
to be related to the level of contribution of developers. Ruby on
Rails has a considerably higher level of contribution compared to
the other projects, and its characteristics are also higher than the
other projects. Conversely, Kotlin KJ2K is at a considerably lower
level on all traits than the other projects.

The proportion of peripheral contribution is an equaliser in the
sense that it evens out the contribution distribution. This can be cor-

roborated by comparing the results for Phabricator and Socket.IO.
While the former has a slightly higher number of commits, the dif-
ference is very small; Phabricator is slightly higher on the commits,
contributions, and appeal characteristics. In the case of Kotlin KJ2K,
however, the effect is not large enough to compensate for the small
project size.

Based on our analysis, the selected characteristics appear to in-
fluence both the efficiency and the effectiveness of onboarding in
the OSS projects considered. In general, higher numbers in size
(i.e., numbers of commits and number of contributors), appeal, and
lifetime is related to an improvement in the performance of new
developers. In addition, it has become apparent that the average
contribution per developer of the peripheral developers of a project
is a characteristic that can influence the onboarding of newcomers,
since it may be an indicator that any developer, not only core ones,
have greater opportunities to influence the overall performance of
the project.

6. DISCUSSION

Mentoring influences the efficiency and effectiveness of onboard-
ing in OSS projects. Having access to a “core” developer appears to
be highly beneficial for new developers. Establishing a relationship
with these developers could therefore be a strategy for onboarding
company employees in important OSS projects. However, based
on our observations during the collaborative program, mentoring
requires a significant investment of time and effort. Practitioners in
a project manager or similar role must balance the cost against the
benefits both in terms of how much their own organisation can spend
and expect to benefit, but also in terms of how to attract mentors
from within the OSS project. As a compensation for mentoring
efforts, some benefit should be offered to the mentor. One concrete
example is offering to work on tasks that are otherwise neglected.
Also, limiting the duration of the mentorship may make it more
appealing. For OSS projects wishing to accelerate inclusion into
their developer community, offering mentorship to prospective new
developers might be a viable strategy. However, we recommend that
mentorship should not bypass the usual requirements of developer
proficiency and quality control in OSS projects. One example of
a successfully operating mechanism for including new developers
into OSS projects is the Debian project’s New Member process [41].
That process includes many elements of a deliberate onboarding
process although it does not focus on deliberate mechanisms for
accelerating inclusion of new developers.

Mature projects are better equipped to receive new developers. In
mature OSS projects, the community is concerned not only with the
immediate goal of producing software, but also with the sustainabil-
ity of the project itself. In such projects, some effort is devoted to
addressing developer turnaround and needs for additional developers.
Our results indicate that such projects are already better equipped to
receive new developers even without deliberate onboarding support.
This has two important implications: deliberate onboarding may
have a greater effect in mature projects, and less mature projects
may benefit from onboarding if it can be integrated into the nor-
mal culture of the project, thus increasing its maturity. For OSS

projects, this means that participating in programs which assist with
onboarding can be beneficial. For companies, it means that the
maturity of the project should be taken into account when designing
an onboarding program. Particularly, the goals of the onboarding
program may have to be adjusted depending on the maturity of the
project — either more towards improving the project maturity in less
mature projects, or more towards specific inclusion targets in more
mature projects.

Onboarding support may occur through communication channels
that are not publicly visible. In our results, we found that the pro-
gression of speed of contribution proceeded in bursts (see Figure 2).
While the exact cause is unknown, we hypothesise that this may
be related to the nature of human learning, or the use of private
communication channels. In light of this, we offer some observa-
tions regarding the nature of mentoring that may be important to
consider. The mentoring relationship includes both elements of
teaching knowledge and skills, but also elements of mutual reflec-
tion, especially regarding the norms, culture, and social aspects of
OSS projects. Mentoring may require a private space where such
considerations can be discussed without needless interference from
the rest of the project. For project managers responsible for onboard-
ing, this means that they must trust mentors to perform their work
even though parts of it may be invisible. Successful onboarding will
then be visible in concrete project results.

7. THREATS TO VALIDITY

Several factors threaten the validity of our findings. Following
Runeson et al. [35], we discuss validity through four aspects: con-
struct, internal, and external validity, as well as reliability.

Construct validity concerns the degree to which a measure actu-
ally measures what it claims to measure. Our method of assessing
the efficiency and effectiveness of onboarding can represent a threat
to the validity of our study, since it compares two processes which
are different in nature. Onboarding processes can be considered
as deliberate, well-structured processes that aim to get developers
engaged and proficient in their projects in the shortest possible time.
The non-deliberate, natural process of involvement in OSS projects
can be thought of as relying primarily on the self-motivation and
interest that prompt developers to participate. One necessary step
in validating a specific onboarding process design should include a
comparison of different onboarding processes in order to obtain a
more precise evaluation of the factors that affect its behaviour and
success. Many OSS developers participate in their projects due to
personal reasons and do not aspire to the kind of high productivity
that has been the dependent variable in this study. A different opera-
tionalisation of the efficiency and effectiveness of onboarding may
be required in those cases.

Internal validity refers to the degree to which confounding factors
are controlled for. The factors that we have analysed cannot be
considered to constitute all the possible factors that may influence
onboarding. Since all the developers in the supported condition are
enrolled in university education, their educational background and
other demographic factors may play a role in their performance.
Also, since some degree of selection was applied, the students may
represent a sample of developers with above-average knowledge and
abilities. The cause-effect relationship between the characteristics
considered and the efficiency and effectiveness of an onboarding
process would require examining each characteristic separately in
order to explain the particular impact that each of them has for
specific aspects of onboarding.

Internal validity is also potentially threatened by the use of stu-
dent subjects. Student behaviour may be motivated by factors that
are different from those found among other kinds of developers. For

instance, students may be motivated primarily by the desire to com-
plete their degree. The lack of economic incentive among students
may or may not be considered a threat to validity, depending on the
viewpoint. On one hand, students may have similar motivations as
volunteer OSS developers, who approach OSS development with
intrinsic motives such as interest in the development work itself, or
the desire to learn. On the other hand, many OSS developers are
employed to work on their projects and thus may have a financial
motivation as well, which the students lack. Although many new-
comers in projects may be students, this cannot be considered to be
the rule. There is also reason to believe that there are differences be-
tween students and experienced developers due to the accumulated
skills of the latter. Both software developers who have general expe-
rience with software development and those who also have specific
experience with OSS are likely to benefit from mentoring in order to
quickly become oriented with the technical aspects of the software,
such as source code structure and software architecture — the mentor
may be able to provide helpful hints or connect the developer with
more knowledgeable colleagues. However, developers who have
little experience with OSS likely need more advice and guidance on
project procedures, integration of tools into the development pro-
cess, and project culture. Thus the exact benefits are likely to differ,
and the balance of mentoring activities may need to be adjusted to
benefit developers with differing levels of experience.

External validity represents the degree to which findings can be
generalised, and the extent to which the findings are useful beyond
the cases investigated. Although we have shown that the efficiency
and effectiveness of onboarding can be influenced to some extent by
mentoring and project characteristics, we have not analysed these
factors in great detail, which limits our ability to determine which
contextual considerations exist for generalisation. Although we
expect the research questions to be of general interest, we have
not shown how the desirable features of mentoring affect specific
aspects of the onboarding process. This may limit the usefulness of
this study.

Finally, we consider the reliability of this study to be high. As
it relies mostly on publicly available quantitative data, it is highly
replicable, and the results of the quantitative analysis methods are
researcher-independent. However, the measures of activity rely on
public communication; untracked, private communication is not
directly visible in the study. Despite this limitation, such communi-
cation is publicly visible if it has resulted in actual work.

8. CONCLUSIONS

Onboarding is a fundamental process in software development
that aims to motivate newcomers and ensure that they can obtain
the knowledge, skills, and behaviours necessary to function in their
new organisations. As OSS projects have become more important
to companies, it becomes important to consider how onboarding
processes can be developed for OSS development environments.

In this paper, we have presented an empirical study that analy-
ses factors that may influence the efficiency and effectiveness of
onboarding in OSS projects. We chose to examine mentoring, as
it was an important aspect of the onboarding process under study,
as well as a set of project characteristics on which OSS projects
may differ significantly. The project characteristics were number of
commits, number of contributors, appeal, lifetime, and peripheral
collaboration.

We found that developers receiving onboarding support were
more efficient and effective than developers who entered the same
projects through the natural, non-deliberate process which is com-
mon in many OSS projects. We also found that there were differ-
ences in onboarding results which could be attributed to OSS project

and community characteristics, such as project age and distribution
of contributions among project members. In particular, appeal and
lifetime had an important influence on the result of onboarding. Our
findings can suggest how to tailor onboarding activities for particu-
lar purposes. We offered some suggestions for companies and OSS
projects considering deliberate onboarding.

We expect that more factors will be studied in the future. Also,
the same factors can be considered in further detail. Furthermore,
a larger and broader set of projects with different and more diverse
characteristics could be used. The location of developers, specific
infrastructural facilities that may influence development, the time
invested by developers working on the project per day, and several
other factors can be analysed. Mentoring can be studied in more
detail by characterising specific kinds of mentoring practices and
approaches adapted to the kind of developers and projects involved.
More explicit links between particular OSS project characteristics
and onboarding can be drawn, isolating their impact, and more
characteristics may be revealed to be important as a larger number
of projects is considered.

The time window considered might be enlarged to consider the
evolution of developers that have received onboarding support com-
pared to those included by the natural process of involvement. Eval-
uating whether the engagement and motivation of developers is
maintained after the onboarding process has concluded is highly
relevant in assessing the success of the process. Likewise, an in-
teresting question is whether peripheral developers reach the same
levels of speed and contribution over time as those that have received
onboarding support. If so, this would imply that both processes are
equally effective, while deliberate onboarding could still be more
efficient.

The collaboration program that delineated the context of our study
is a good example of how companies can establish mechanisms that
help them to gather new developers into OSS projects that are in
their corporate interests.

In the future, we plan to devise guidelines that serve to get de-
velopers successfully onboard in OSS projects, with mechanisms
and practices that are adaptable to the specific characteristics of
different projects. The understanding and correct characterisation of
onboarding in OSS projects may also benefit the understanding of
this process in other contexts and for other types of projects.

9. REFERENCES

[1] P. Abrahamsson, P. Kettunen, and F. Fagerholm. The set-up of
a software engineering research infrastructure of the 2010s. In
Proceedings of the 11th International Conference on Product
Focused Software, pages 112-114, New York, NY, USA, 2010.
ACM.

[2] A. Alali, H. Kagdi, and J. I. Maletic. What’s a Typical
Commit? A Characterization of Open Source Software
Repositories. In Proceedings of the 2008 The 16th IEEE
International Conference on Program Comprehension, ICPC
’08, pages 182-191, Washington, DC, USA, 2008. IEEE
Computer Society.

[3] V. Basili and D. Weiss. A Methodology for Collecting Valid
Software Engineering Data. Software Engineering, IEEE
Transactions on, SE-10(6):728-738, 1984.

[4] T. N. Bauer, T. Bodner, B. Erdogan, D. M. Truxillo, and J. S.
Tucker. Newcomer adjustment during organizational
socialization: A meta-analytic review of antecedents,
outcomes, and methods. Journal of Applied Psychology,
92(3):707-721, 2007.

[5] T.N. Bauer and B. Erdogan. Organizational socialization: The
effective onboarding of new employees. 2011.

(6]

(7]

(8]

[9

—

(10]

(1]

[12]

[13]

[14]

[15]

[16]

(171

(18]

[19]

[20]

A. Begel and B. Simon. Novice software developers, all over
again. In Proceedings of the Fourth international Workshop
on Computing Education Research, ICER ’08, pages 3-14,
New York, NY, USA, 2008. ACM.

A. Begel and B. Simon. Struggles of new college graduates in
their first software development job. SIGCSE Bull.,
40(1):226-230, Mar. 2008.

C. Bird, A. Gourley, P. Devanbu, A. Swaminathan, and

G. Hsu. Open Borders? Immigration in Open Source Projects.
In Mining Software Repositories, 2007. ICSE Workshops MSR
'07. Fourth International Workshop on, pages 6-6, 2007.

C. Bird, P. Rigby, E. Barr, D. Hamilton, D. German, and

P. Devanbu. The promises and perils of mining git. In Mining
Software Repositories, 2009. MSR ’09. 6th IEEE International
Working Conference on, pages 1-10, 2009.

A. Bonaccorsi, D. Lorenzi, M. Merito, and C. Rossi. Business
Firms’ Engagement in Community Projects. Empirical
Evidence and Further Developments of the Research. In
Emerging Trends in FLOSS Research and Development, 2007.
FLOSS °07. First International Workshop on, pages 13—13,
2007.

A. Capiluppi and D. Izquierdo-Cortazar. Effort estimation of
FLOSS projects: a study of the Linux kernel. Empirical
Software Engineering, 18(1):60-88, 2013.

A. Capiluppi, P. Lago, and M. Morisio. Characteristics of
open source projects. In Software Maintenance and
Reengineering, 2003. Proceedings. Seventh European
Conference on, pages 317-327, 2003.

K. Crowston, H. Annabi, J. Howison, and C. Masango.
Effective work practices for software engineering: free/libre
open source software development. In Proceedings of the
2004 ACM workshop on Interdisciplinary software
engineering research, WISER ’04, pages 18-26, New York,
NY, USA, 2004. ACM.

K. Crowston and J. Howison. Assessing the health of open
source communities. Computer, 39(5):89-91, 2006.

K. Crowston, K. Wei, J. Howison, and A. Wiggins. Free/Libre
open-source software development: What we know and what
we do not know. ACM Comput. Surv., 44(2):7:1-7:35, Mar.
2008.

L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb. Social coding
in GitHub: transparency and collaboration in an open software
repository. In Proceedings of the ACM 2012 conference on
Computer Supported Cooperative Work, CSCW 12, pages
1277-1286, New York, NY, USA, 2012. ACM.

B. Dagenais, H. Ossher, R. K. E. Bellamy, M. P. Robillard,
and J. P. de Vries. Moving into a new software project
landscape. In Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering - Volume 1,
ICSE 10, pages 275-284, New York, NY, USA, 2010. ACM.
N. Ducheneaut. Socialization in an Open Source Software
Community: A Socio-Technical Analysis. Comput. Supported
Coop. Work, 14(4):323-368, Aug. 2005.

S. Elliott Sim and R. C. Holt. The ramp-up problem in
software projects: a case study of how software immigrants
naturalize. In Proceedings of the 20th international conference
on Software engineering, ICSE *98, pages 361-370,
Washington, DC, USA, 1998. IEEE Computer Society.

F. Fagerholm, A. S. Guinea, J. Miinch, and J. Borenstein.
Dataset for the paper: The Role of Mentoring and Project
Characteristics for Onboarding in Open Source Software
Projects. figshare.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

http://dx.doi.org/10.6084/m9.figshare.971155.
Retrieved Mar 24, 2014.

F. Fagerholm, P. Johnson, A. S. Guinea, J. Borenstein, and
J. Miinch. Onboarding in Open Source Software Projects: A
Preliminary Analysis. International Conference on Global
Software Engineering, 2013. in press.

F. Fagerholm, N. Oza, and J. Miinch. A Platform for Teaching
Applied Distributed Software Development: The Ongoing
Journey of the Helsinki Software Factory. Collaborative
Teaching of Globally Distributed Software Development,
2013.

Y. Fang and D. Neufeld. Understanding Sustained
Participation in Open Source Software Projects. J. Manage.
Inf. Syst., 25(4):9-50, Apr. 2009.

M. Frigge, D. C. Hoaglin, and B. Iglewicz. Some
Implementations of the Boxplot. The American Statistician,
43(1):pp. 50-54, 1989.

T. Fritz, J. Ou, G. C. Murphy, and E. Murphy-Hill. A

degree-of-knowledge model to capture source code familiarity.

In Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering - Volume 1, ICSE 10,
pages 385-394, New York, NY, USA, 2010. ACM.

C. Gini. Variabilitd et mutabilita, 1921. In E. Pizetti and

T. Salvemini, editors, Memorie di metodologia statistica.
Libreria Eredi Virgilio Veschi, Rome, 1955. Reprinted.

G. Gousios, E. Kalliamvakou, and D. Spinellis. Measuring
developer contribution from software repository data. In
Proceedings of the 2008 international working conference on
Mining software repositories, MSR ’08, pages 129—-132, New
York, NY, USA, 2008. ACM.

S. Grand, G. Von Krogh, D. Leonard, and W. Swap. Resource
allocation beyond firm boundaries: A multi-level model for
open source innovation. Long Range Planning,
37(6):591-610, 2004.

L. Hemphill and A. Begel. Not Seen and Not Heard.
Technical report, Microsoft, 2011.

J. Howison and K. Crowston. The perils and pitfalls of mining
SourceForge. 26th International Conference on Software
Engineering - W17S Workshop "International Workshop on
Mining Software Repositories (MSR 2004)", 4:7-11, 2004.
S.-K. Huang and K.-m. Liu. Mining version histories to verify
the learning process of legitimate peripheral participants. In
ACM SIGSOFT Software Engineering Notes, volume 30,
pages 1-5. ACM, 2005.

C. Jergensen, A. Sarma, and P. Wagstrom. The onion patch:
migration in open source ecosystems. In Proceedings of the
19th ACM SIGSOFT symposium and the 13th European
conference on Foundations of software engineering,
ESEC/FSE ’11, pages 70-80, New York, NY, USA, 2011.
ACM.

A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two case
studies of open source software development: Apache and
Mozilla. ACM Trans. Softw. Eng. Methodol., 11(3):309-346,
July 2002.

[34]

[35]

[36]

(371

(38]

(391

[40]

[41]

[42]

[43]

[44]

[45]

[46]

S. Oreg and O. Nov. Exploring motivations for contributing to
open source initiatives: The roles of contribution context and
personal values. Comput. Hum. Behav., 24(5):2055-2073,
Sept. 2008.

P. Runeson, M. Host, A. Rainer, and B. Regnell. Case Study
Research in Software Engineering: Guidelines and Examples.
John Wiley & Sons, Inc., Hoboken, New Jersey, 2012.

A. Schilling, S. Laumer, and T. Weitzel. Train and retain: the
impact of mentoring on the retention of FLOSS developers. In
Proceedings of the 50th annual conference on Computers and
People Research, SIGMIS-CPR 12, pages 79-84, New York,
NY, USA, 2012. ACM.

B. Shibuya and T. Tamai. Understanding the process of
participating in open source communities. In Proceedings of
the 2009 ICSE Workshop on Emerging Trends in
Free/Libre/Open Source Software Research and Development,
FLOSS ’09, pages 1-6, Washington, DC, USA, 2009. IEEE
Computer Society.

S. Sowe, 1. Stamelos, and L. Angelis. Identifying knowledge
brokers that yield software engineering knowledge in OSS
projects. Information and Software Technology,
48(11):1025-1033, 2006.

S. K. Sowe, I. Stamelos, and L. Angelis. Understanding
knowledge sharing activities in free/open source software
projects: An empirical study. J. Syst. Softw., 81(3):431-446,
Mar. 2008.

W. Swap, D. Leonard, M. Shields, and L. Abrahams. Using
Mentoring and Storytelling to Transfer Knowledge in the
Workplace. J. Manage. Inf. Syst., 18(1):95-114, May 2001.
The Debian Project. Debian New Members Corner.
http://www.debian.org/devel/join/newmaint.
Retrieved Mar 24, 2014.

G. von Krogh and S. Spaeth. The open source software
phenomenon: Characteristics that promote research. The
Journal of Strategic Information Systems, 16(3):236-253,
2007.

G. von Krogh, S. Spaeth, and S. Haefliger. Knowledge Reuse
in Open Source Software: An Exploratory Study of 15 Open
Source Projects. In System Sciences, 2005. HICSS "05.
Proceedings of the 38th Annual Hawaii International
Conference on, pages 198b—198b, 2005.

G. Von Krogh, S. Spaeth, and K. R. Lakhani. Community,
joining, and specialization in open source software innovation:
a case study. Research Policy, 32(7):1217-1241, 2003.

C. Wohlin, M. Host, and K. Henningsson. Empirical Research
Methods in Software Engineering. In R. Conradi and

A. Wang, editors, Empirical Methods and Studies in Software
Engineering, volume 2765 of Lecture Notes in Computer
Science, pages 7-23. Springer Berlin Heidelberg, 2003.

M. Zhou and A. Mockus. Developer fluency: achieving true
mastery in software projects. In Proceedings of the eighteenth
ACM SIGSOFT international symposium on Foundations of
software engineering, FSE ’10, pages 137-146, New York,
NY, USA, 2010. ACM.

http://dx.doi.org/10.6084/m9.figshare.971155
http://www.debian.org/devel/join/newmaint

	1 Introduction
	2 Related Work and Research Questions
	3 Context
	4 Study definition and design
	4.1 Conceptualisation of Factors in Onboarding

	5 Analysis and Results
	5.1 Influence of Mentoring on Onboarding
	5.2 Influence of Project Characteristics on Onboarding

	6 Discussion
	7 Threats to Validity
	8 Conclusions
	9 References

